Flow physics and dynamics of flow-induced pitch oscillations of an airfoil

Author:

Menon KarthikORCID,Mittal RajatORCID

Abstract

We conduct a computational study of flow-induced pitch oscillations of a rigid airfoil at a chord-based Reynolds number of 1000. A sharp-interface immersed boundary method is used to simulate two-dimensional incompressible flow, and this is coupled with the equations for a rigid foil supported at the elastic axis with a linear torsional spring. We explore the effect of spring stiffness, equilibrium angle-of-attack and elastic-axis location on the onset of flutter, and the analysis of the simulation data provides insights into the time scales and mechanisms that drive the onset and dynamics of flutter. The dynamics of this configuration includes complex phenomena such as bifurcations, non-monotonic saturation amplitudes, hysteresis and non-stationary limit-cycle oscillations. We show the utility of ‘maps’ of energy exchange between the flow and the airfoil system, as a way to understand, and even predict, this complex behaviour.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference49 articles.

1. A brief review of recent results in vortex-induced vibrations

2. VORTEX-INDUCED VIBRATIONS

3. Theodorsen, T. 1935 General theory of aerodynamic instability and the mechanism of flutter NACA Report No. 496. Tech. Rep., US National Advisory Committee for Aeronautics.

4. A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3