Construction of reduced-order models for fluid flows using deep feedforward neural networks

Author:

Lui Hugo F. S.,Wolf William R.ORCID

Abstract

We present a numerical methodology for construction of reduced-order models (ROMs) of fluid flows through the combination of flow modal decomposition and regression analysis. Spectral proper orthogonal decomposition is applied to reduce the dimensionality of the model and, at the same time, filter the proper orthogonal decomposition temporal modes. The regression step is performed by a deep feedforward neural network (DNN), and the current framework is implemented in a context similar to the sparse identification of nonlinear dynamics algorithm. A discussion on the optimization of the DNN hyperparameters is provided for obtaining the best ROMs and an assessment of these models is presented for a canonical nonlinear oscillator and the compressible flow past a cylinder. Then the method is tested on the reconstruction of a turbulent flow computed by a large eddy simulation of a plunging airfoil under dynamic stall. The reduced-order model is able to capture the dynamics of the leading edge stall vortex and the subsequent trailing edge vortex. For the cases analysed, the numerical framework allows the prediction of the flow field beyond the training window using larger time increments than those employed by the full-order model. We also demonstrate the robustness of the current ROMs constructed via DNNs through a comparison with sparse regression. The DNN approach is able to learn transient features of the flow and presents more accurate and stable long-term predictions compared to sparse regression.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3