The role of soluble surfactants in the linear stability of two-layer flow in a channel

Author:

Kalogirou A.ORCID,Blyth M. G.ORCID

Abstract

The linear stability of Couette–Poiseuille flow of two superposed fluid layers in a horizontal channel is considered. The lower fluid layer is populated with surfactants that appear either in the form of monomers or micelles and can also get adsorbed at the interface between the fluids. A mathematical model is formulated which combines the Navier–Stokes equations in each fluid layer, convection–diffusion equations for the concentration of monomers (at the interface and in the bulk fluid) and micelles (in the bulk), together with appropriate coupling conditions at the interface. The primary aim of this study is to investigate when the system is unstable to arbitrary wavelength perturbations, and in particular, to determine the influence of surfactant solubility and/or sorption kinetics on the instability. A linear stability analysis is performed and the growth rates are obtained by solving an eigenvalue problem for Stokes flow, both numerically for disturbances of arbitrary wavelength and analytically using long-wave approximations. It is found that the system is stable when the surfactant is sufficiently soluble in the bulk and if the fluid viscosity ratio $m$ and thickness ratio $n$ satisfy the condition $m<n^{2}$. On the other hand, the effect of surfactant solubility is found to be destabilising if $m\geqslant n^{2}$. Both of the aforementioned results are manifested for low bulk concentrations below the critical micelle concentration; however, when the equilibrium bulk concentration is sufficiently high (and above the critical micelle concentration) so that micelles are formed in the bulk fluid, the system is stable if $m<n^{2}$ in all cases examined.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference62 articles.

1. Strongly nonlinear nature of interfacial-surfactant instability of Couette flow;Frenkel;Intl J. Pure Appl. Maths,2006

2. Shear-flow instability due to a wall and a viscosity discontinuity at the interface

3. Accurate solution of the Orr–Sommerfeld stability equation;Orzag;J. Fluid Mech.,1971

4. Breakup of surfactant-laden jets above the critical micelle concentration

5. Destabilization of a creeping flow by interfacial surfactant: linear theory extended to all wavenumbers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3