Abstract
The piston and first sloshing modes of two-dimensional moonpools with recess are investigated. Dedicated forced heave experiments are carried out. Different recess lengths are tested from $1/4$ to $1/2$ of the length of the moonpool at the mean waterline. A theoretical model to calculate the natural frequencies is developed based on linearized potential flow theory and eigenfunction expansion. Two numerical methods are implemented: a boundary element method (BEM) and a Navier–Stokes solver (CFD). Both the BEM and CFD have linearized free-surface and body-boundary conditions. As expected, the BEM over-predicts the moonpool response significantly, in particular at the first sloshing mode. The CFD is in general able to predict the maximum moonpool response adequately, both at the piston and first sloshing modes. Both numerical methods fail to predict the Duffing-type behaviour at the first sloshing mode, due to the linearized free-surface conditions. The Duffing behaviour is more pronounced for the largest recess. The main source of damping in the proximity of the first sloshing mode is discussed.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献