Post-collisional polycyclic plutonism from the Zagros hinterland: the Shaivar Dagh plutonic complex, Alborz belt, Iran

Author:

AGHAZADEH MEHRAJ,CASTRO ANTONIO,BADRZADEH ZAHRA,VOGT KATHARINA

Abstract

AbstractThe petrological and geochronological study of the Cenozoic Shaivar Dagh composite intrusion in the Alborz Mountain belt (NW Iran) reveals important clues to decipher complex relations between magmatic and tectonic processes in the central sectors of the Tethyan (Alpine–Himalayan) orogenic belt. This pluton is formed by intrusion at different times of two main magmatic cycles. The older (Cycle 1) is formed by calc-alkaline silicic rocks, which range in composition from diorites to granodiorites and biotite granites, with abundant mafic microgranular enclaves. The younger cycle (Cycle 2) is formed by K-rich monzodiorite and monzonite of marked shoshonitic affinity. The latter form the larger volumes of the exposed plutonic rocks in the studied complex. Zircon geochronology (laser ablation ICP-MS analyses) gives a concordia age of 30.8 ± 2.1 Ma for the calc-alkaline rocks (Cycle 1) and a range from 23.3 ± 0.5 to 25.1 ± 0.9 Ma for the shoshonitic association (Cycle 2). Major and trace element relations strongly support distinct origins for each magmatic cycle. Rocks of Cycle 1 have all the characteristic features of active continental margins. Shoshonitic rocks (Cycle 2) define two continuous fractionation trends: one departing from a K-rich basaltic composition and the other from an intermediate, K-rich composition. A metasomatized-mantle origin for the two shoshonitic series of Cycle 2 is proposed on the basis of comparisons with experimental data. The origin of the calc-alkaline series is more controversial but it can be attributed to processes in the suprasubduction mantle wedge related to the incorporation of subducted mélanges in the form of silicic cold plumes. A time sequence can be established for the processes responsible of the generation of the two magmatic cycles: first a calc-alkaline cycle typical of active continental margins, and second a K-rich cycle formed by monzonites and monzodiorites. This sequence precludes the younger potassic magmas as precursors of the older calc-alkaline series. By contrast, the older calc-alkaline magmas may represent the metasomatic agents that modified the mantle wedge during the last stages of subduction and cooked a fertile mantle region for late potassic magmatism after continental collision.

Publisher

Cambridge University Press (CUP)

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3