Shales of Palaeo-Mesoproterozoic Vindhyan Basin, central India: insight into sedimentation dynamics of Proterozoic shelf

Author:

Singh Arvind K.ORCID,Chakraborty Partha Pratim

Abstract

AbstractThe Vindhyan Supergroup represents the largest Proterozoic sedimentary basin fill in the Indian shield. In addition to some significant palaeobiological discoveries, the sedimentary sequence of the Vindhyan, particularly its argillaceous intervals, holds crucial information for our understanding of sedimentation dynamics in Proterozoic clastic shelves. Here we attempt an extensive, although not exhaustive, review of the physical characteristics of six argillaceous (shale) intervals (Arangi, Koldaha, Rampur, Bijaygarh, Rewa and Sirbu shale) from the Son valley sector, Vindhyan Basin, augmented with new observations to unravel the status of current understanding in terms of palaeo-flow dynamics, shelf sedimentation processes and dispersal pattern, depositional cyclicity and basinal tectonics. The sedimentary attributes of Vindhyan shales reveal their deposition largely in relative bathymetry fluctuating from distal shoreface or inner shelf (near to fair-weather wave base) to distal shelf below storm wave base. More often than not, the Vindhyan shelf was storm-infested and the operation of both storm-generated return flow and Coriolis-force-guided geostrophic currents are documented from different stratigraphic intervals of argillaceous successions. The thick arenaceous intervals interrupting the deposits of the Koldaha, Rewa and Sirbu shales at multiple stratigraphic levels indicate the presence of a fan delta and braided fluvial system during intermittent regressive stands of sea level or event deposition during a sea-level highstand, respectively. Based on facies pattern and flow vectors, a rift-related half-graben model is inferred for Arangi and Koldaha shale and a low-gradient stable-shelf model with well-defined energy gradient is proposed for successions from Rampur shale onwards.

Publisher

Cambridge University Press (CUP)

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3