Climate-controlled organic matter accumulation as recorded in the Upper Jurassic Argiles de Châtillon Formation, a shallow-marine counterpart of the Kimmeridge Clay Formation

Author:

van der Hoeven I. C.ORCID,Verreussel R. M. C. H.,Riboulleau A.,Tribovillard N.,van de Schootbrugge B.ORCID

Abstract

AbstractMudstones from the Argiles de Châtillon Formation exposed in the Boulonnais region of Northern France represent a proximal lateral equivalent of the organic-rich Kimmeridge Clay Formation. The Argiles de Châtillon Formation is composed of two subunits that straddle the Kimmeridgian–Tithonian boundary. Each subunit contains an organic-rich interval. The two conspicuous organic-rich intervals have been linked to either periods of high sea level or greenhouse warming. Here, we use palynology to further understand climate and environmental mechanisms that drove organic matter enrichment. We use bulk organic carbon isotope records (δ13Corg) to correlate the Boulonnais sections with those of the Kimmeridge Clay Formation. The palynological results suggest that the stratigraphically lower organic-rich interval (Kimmeridgian) was deposited under suboxic to anoxic stratified conditions. A large-scale climate shift from cooler/humid to warmer/arid conditions marked the Kimmeridgian–Tithonian boundary, influencing organic matter enrichment in the stratigraphically higher organic-rich interval (Tithonian). In contrast with the lower organic-rich interval, there are no indications of stratified conditions for the higher organic-rich interval. Within this thicker organic-rich interval, cyclic variations in amorphous organic matter distribution, total organic carbon and δ13Corg trends on a 2 m scale are observed. They co-occur with fluctuations of the palynological assemblages, indicative of more humid versus arid climate conditions, likely alternating on a ∼100 kyr eccentricity timescale. Our results show that under the most humid phases of these overall arid climate conditions, sulfurization of carbohydrates was the dominant control on organic matter preservation. This climate-controlled process that drives organic matter enrichment in the Tithonian can be recognized on a basin-wide scale.

Publisher

Cambridge University Press (CUP)

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3