Hydroclimatic conditions and sediment provenance in the northeastern Arabian Sea since the late Miocene: insights from geochemical and environmental magnetic records at IODP Site U1457 of the Laxmi Basin

Author:

Alam Mahboob,Muguli Tripti,Gurumurthy G.P.ORCID,Arif Mohammad,Sohrin Yoshiki,Singh Arun Deo,Radhakrishna T.,Pandey Dhananjai Kumar,Verma Komal

Abstract

AbstractPalaeo-monsoon and palaeoclimate conditions over Southeast Asia are a matter of debate despite notable studies on the continental and oceanic sedimentary record. The present study investigates the environmental magnetic and geochemical records preserved in the deep marine sediments of the northeastern (NE) Arabian Sea to elucidate the erosion history of the western Himalayas and its link with the prevailing hydroclimatic conditions since the late Miocene. For this, the sediment core retrieved during International Ocean Discovery Program (IODP) Expedition 355 at Site U1457 in the NE Arabian Sea has been explored. The results reveal that the hydroclimatic conditions were predominantly arid during the late Miocene, except for humid intervals from 6.1 Ma to 5.6 Ma. Humid climate conditions in the Indus River Basin returned during the mid-Pliocene and continued to the Pleistocene with an intense chemical weathering regime from 1.9 Ma to 1.2 Ma. The dominant sediment source to the NE Arabian Sea at Site U1457 during the late Miocene and the Pliocene was the Indus River, while during the Pleistocene, mixed sediments brought by the Indus River and the Peninsular Indian rivers were observed. The sediment contribution from a chemically less altered mafic source (the Deccan basalts) increased between 1.2 Ma and 0.2 Ma, possibly linked to a weak Indian Summer Monsoon. The summer monsoon wind strength and associated shift in the Inter-Tropical Convergence Zone (ITCZ) influenced the dominant sediment provenance at Site U1457 of the Laxmi Basin.

Publisher

Cambridge University Press (CUP)

Subject

Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3