Role of fluids on deformation in mid-crustal shear zones, Raft River Mountains, Utah

Author:

Gottardi RaphaëlORCID,Hughes Brendan

Abstract

AbstractFluids are commonly invoked as the primary cause for weakening of detachment shear zones. However, fluid-related mechanisms such as pressure-solution, reaction-enhanced ductility, reaction softening and precipitation of phyllosilicates are not fully understood. Fluid-facilitated reaction and mass transport cause rheological weakening and strain localization, eventually leading to departure from failure laws derived in laboratory experiments. This study focuses on the Miocene Raft River detachment shear zone in northwestern Utah. The shear zone is localized in the Proterozoic Elba Quartzite, which unconformably overlies the Archaean basement, and consists of an alternating sequence of quartzite and muscovite-quartzite schist. In this study, we characterize fluid-related microstructures to constrain conditions that promoted brittle failure in a plastically deforming shear zone. Thin-section analyses reveal the presence of healed microcracks, transgranular fluid inclusion planes and grain boundary fluid inclusion clusters. Healed microcracks occur in three sets, one sub-perpendicular to the mylonitic foliation, and a set of two conjugate microcracks oriented at ∼40–60° to the mylonitic foliation. Healed microfractures are filled with quartz, which has a distinct fabric, suggesting that microcracks healed while the shear zone was still at conditions favourable for quartz crystal plasticity. Transgranular fluid inclusion planes also occur in three sets, similar in orientation to the healed microfractures. Fluid inclusions commonly decorate grain and subgrain boundaries as inter- and intragranular clusters. Our results document ductile overprint of brittle microstructures, suggesting that, during exhumation, the Raft River detachment shear zone crossed the brittle–ductile transition repeatedly, providing pathways for fluids to permeate through this shear zone.

Publisher

Cambridge University Press (CUP)

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3