Geochemical and isotopic studies of the sedimentary and granitic rocks of the Altai orogen of northwest China and their tectonic implications

Author:

CHEN BIN,JAHN BOR-MING

Abstract

The Altai orogen (northwest China) represents the southwestern margin of the Central Asian Orogenic Belt. Geochemical and Nd–Sr isotope analyses were carried out on the Palaeozoic sedimentary and granitic rocks in order to trace their sources and to evaluate the pattern of continental growth of the orogen. Nd isotopic data for both the granites and sediments suggest a significant proportion of middle Proterozoic crust beneath the Altai orogen. However, addition of juvenile material (arc/back-arc oceanic crust) during Palaeozoic times is also significant. Trace elements and isotopic data of sediments suggest their sources were immature. They represent mixtures between a Palaeozoic juvenile component and an evolved continental crust. The early Palaeozoic sediments show εNd(T) = −3.4 to −5.0, TDM = 1.5–1.8 Ga, and ISr = 0.710–0.712. They represent a passive margin setting, with a predominance of evolved crustal material in the source. The Devonian sequences, however, might have been deposited in a back-arc basin setting, produced by subduction of the Junggar oceanic crust along the Irtysh fault. A significant addition of arc material into the sedimentary basin is responsible for the highly variable εNd values (−6 to 0) and ISr (0.711–0.706). The Carboniferous rocks were also deposited in a back-arc basin setting but with predominantly arc material in the source as suggested by an abrupt increase in εNd(T) (+6 to +3) and decrease in ISr (0.7045–0.7051). Voluminous syn-orogenic granitoids have εNd(T) = +2.1 to −4.3, ISr = 0.705–0.714 and TDM = 0.7–1.6 Ga. They were not derived by melting of local metasedimentary rocks as suggested by previous workers, but by melting of a more juvenile source at depth. Post-orogenic granites have higher εNd(T) (∼ +4.4) than the syn-orogenic granitoids, indicating their derivation from a deeper crustal level where juvenile crust may predominate.

Publisher

Cambridge University Press (CUP)

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3