Weak and intermittent anoxia during the mid-Tournaisian (Mississippian) anoxic event in the Montagne Noire, France

Author:

Rakociński MichałORCID,Książak Daria,Pisarzowska Agnieszka,Zatoń Michał,Aretz Markus

Abstract

AbstractThe mid-Tournaisian black radiolarian cherts of the Lydiennes Formation are exposed in deep-shelf successions of the Puech de la Suque and Col des Tribes sections of the Mont Peyroux Nappe area in the Montagne Noire, southern France. This interval represents the mid-Tournaisian anoxic event that is also termed the Lower Alum Shale Event. This event is associated with a global marine transgression that was characterized by increased productivity and drastic facies changes from pelagic carbonate sedimentation to the widespread deposition of black organic-rich siliceous shales and radiolarites in many parts of the world. In the present study, high-resolution inorganic geochemistry and framboidal pyrite analyses were employed to decipher changes in depositional conditions during the mid-Tournaisian anoxic event in the Montagne Noire. The results show that the total organic carbon contents of sediments associated with the Lower Alum Shale Event vary from 0.09 to 1.9 wt %. These low to moderate total organic carbon contents, high U/Th, low Corg/P and intermediate V/Cr ratios, enrichment in redox-sensitive trace elements, such as U, Mo and V, as well as varying sizes of pyrite framboids, indicate periodic dysoxic to anoxic bottom-water conditions during deposition of the studied sediments. Anomalous Hg spikes (>500 ppb) are also reported in the mid-Tournaisian deep-water marine succession of the Montagne Noire in the present study, which confirm a possible influence of increased regional volcanic activity during this environmental turnover.

Publisher

Cambridge University Press (CUP)

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3