Scratching the discs: evaluating alternative hypotheses for the origin of the Ediacaran discoidal structures from the Cerro Negro Formation, La Providencia Group, Argentina

Author:

Inglez LucasORCID,Warren Lucas V.,Quaglio Fernanda,Netto Renata G.,Okubo JulianaORCID,Arrouy Maria J.,Simões Marcello G.,Poiré Daniel G.

Abstract

Abstract In the Ediacaran marine succession of the Cerro Negro Formation (Tandilia System, NE Argentina), abundant microbially induced sedimentary structures indicate general conditions of substrate biostabilization. Numerous discoidal structures in this succession were previously interpreted as moulds of soft-tissue holdfasts of sessile organisms, within the form genus Aspidella. In this study, we performed a detailed re-analysis of some of these features and discuss two alternative hypotheses to explain their genesis: (1) as the result of soft-sediment deformation and fluid injection structures; and (2) as structures of active animal–sediment interaction (i.e. trace fossils). We show that the dome-shaped discs are internally laminated, with a cylindrical to a funnel-shaped vertical tube at their central region. The presence of these downwards vertical extensions and other intricate internal arrangements cannot be explained under the taphonomic spectrum of discoidal fossils, but shows striking similarities to Intrites-like structures and other sand-volcano-like pseudofossils (e.g. Astropolithon). However, some structures are hard to distinguish from vertical dwelling burrows with funnel-shaped apertures and thick-lined walls, commonly produced by suspension- and detritus-feeding invertebrates (e.g. Skolithos isp., Monocraterion isp. and, less likely, Rosselia isp.). Since reliable age constraints are unavailable, and further investigation concerning other palaeobiological indicators is needed, the most parsimonious hypothesis is that of a structure derived from fluid-escape processes. Our study demonstrates the importance of detailed investigation on discoidal structures in either upper Ediacaran or lower Cambrian strata.

Publisher

Cambridge University Press (CUP)

Subject

Geology

Reference108 articles.

1. Ediacaran discs from South America: probable soft-bodied macrofossils unlock the paleogeography of the Clymene Ocean

2. Menon, LR , McIlroy, D and Brasier, MD (2016) ‘Intrites’ from the Ediacaran Longmyndian Supergroup, UK: a new form of microbially-induced sedimentary structure (MISS). In Earth System Evolution and Early Life: A Celebration of the Work of Martin Brasier (eds AT Braiser, D McIlroy and N McLoughlin), pp. 271–83. Geological Society of London, Special Publication no. 448.

3. The youngest record of trace fossil Rosselia socialis: Occurrence in the Holocene shallow marine deposits of Japan

4. Recognising triggers for soft-sediment deformation: Current understanding and future directions

5. Crowded Rosselia socialis in Pleistocene Inner Shelf Deposits: Benthic Paleoecology During Rapid Sea-level Rise

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3