Triassic magmatism in the European Southern Alps as an early phase of Pangea break-up

Author:

De Min AngeloORCID,Velicogna Matteo,Ziberna Luca,Chiaradia Massimo,Alberti Antonio,Marzoli Andrea

Abstract

AbstractMagmatic rocks from the Dolomites, Carnic and Julian Alps, Italy, have been sampled to investigate the origin and geodynamic setting of Triassic magmatism in the Southern Alps. Basaltic, gabbroic and lamprophyric samples have been characterized for their petrography, mineral chemistry, whole-rock major and trace elements, and Sr, Nd and Pb isotopic compositions. Geothermobarometric estimates suggest that the basaltic magmas crystallized mostly at depths of 14–20 km. Isotopic data show variable degrees of crustal contamination decreasing westwards, probably reflecting a progressively more restitic nature of the crust, which has been variably affected by melting during the Permian period. Geochemical and isotopic data suggest that the mantle source was metasomatized by slab-derived fluids. In agreement with previous studies and based on geological evidence, we argue that this metasomatism was not contemporaneous with the Ladinian–Carnian magmatism but was related to previous subduction episodes. The lamprophyres, which likely originated some 20 Ma later by lower degrees of melting and at higher pressures with respect to the basaltic suite, suggest that the mantle source regions of Triassic magmatism in the Dolomites was both laterally and vertically heterogeneous. We conclude that the orogenic signatures of the magmas do not imply any coeval subduction in the surrounding of Adria. We rather suggest that this magmatism is related to the Triassic rifting episodes that affected the western Mediterranean region and that were ultimately connected to the rifting events that caused the break-up of Pangea during the Late Triassic – Early Jurassic period.

Publisher

Cambridge University Press (CUP)

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3