Cambro-Ordovician vs Devono-Carboniferous geodynamic evolution of the Bohemian Massif: evidence from P–T–t studies in the Orlica–Śnieżnik Dome, SW Poland

Author:

JASTRZĘBSKI MIROSŁAW,BUDZYŃ BARTOSZ,STAWIKOWSKI WOJCIECH

Abstract

AbstractThe pressure–temperature–deformation–time (P–T–d–t) record of metagranitic rocks and adjacent diverse rocks of the metavolcano-sedimentary group from the Orlica–Śnieżnik Dome (OSD) in SW Poland is examined. The study aims to better understand the course of the break-up of northern Gondwana and the overprinting Variscan tectonometamorphism in the NE Bohemian Massif. We test the existing hypotheses that explain the Cambro-Ordovician thermal event recorded in the meta-supracrustal group by (i) syn-deformational regional metamorphism or (ii) the contact metamorphism of the (meta)sedimentary rocks around the intruding ~490–500 Ma granitic magmas. In addition, we check the extent and timing of the Variscan prograde and retrograde medium-pressure metamorphism in the OSD. The results imply that Early Palaeozoic monazites, rarely preserved in both rock groups, document ~490–500 Ma volcanic and plutonic events related to the Gondwana's break-up and following disturbance of the Th–U–Pb system during younger, Variscan events. The monazite geochronology reveals no distinct Cambro-Ordovician thermal aureole around the post-granitic orthogneisses. However, no large-scale Variscan juxtaposition is evident between the two main OSD rock groups or within the meta-supracrustal rocks. Consistent P–T–d–t results for the meta-supracrustal rocks and the orthogneisses suggest that their precursors contacted before the Variscan tectonometamorphism. The directly contiguous ortho- and paragneisses together experienced tectonometamorphic processes at maximum depths that correspond to 7.5–8.0 kbar and maximum temperatures of ~600–620°C, as a result of the Variscan collision of Gondwana and Euramerica. The continental collision-related events intensified at ~360 Ma and ~330–340 Ma.

Publisher

Cambridge University Press (CUP)

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3