The genesis of metamorphosed Paleoproterozoic massive sulphide occurrences in central Colorado: geological, mineralogical and sulphur isotope constraints

Author:

Berke Edward H.,Spry Paul G.ORCID,Heimann Adriana,Teale Graham S.,Johnson Benjamin,von der Handt Anette,Alers Brian,Shallow John M.

Abstract

AbstractPaleoproterozoic massive Cu-Zn±Pb±Au±Ag sulphide deposits metamorphosed to the middle-upper amphibolite facies in central-south Colorado formed in a volcanic arc setting on the edge of the Yavapai crustal province. Previously published U-Pb ages on spatially related granitoids range from ∼1.9 to ∼1.1 Ga, while Pb isotope studies on galena from massive sulphides suggest mineralization formed at around 1.8–1.7 Ga. Some deposits in the Dawson-Green Mountain trend (DGMT) and the Gunnison belt are composed of Cu-Zn-Au-(Pb-Ag) mineralization that were overprinted by later Au-(Ag-Cu-Bi-Se-Te) mineralization. Sulphide mineralization is spatially related to amphibolite and bimodal, mafic-felsic volcanic rocks (gabbro, amphibolite, rhyolite and dacite) and granitoids, but it occurs mostly in biotite-garnet-quartz±sillimanite±cordierite schists and gneisses, spatially related to nodular sillimanite rocks, and in some locations, exhalative rocks (iron formations, gahnite-rich rocks and quartz-garnetite). The major metallic minerals of the massive sulphides include chalcopyrite, sphalerite, pyrite, pyrrhotite, and magnetite, with minor galena and gahnite. Altered rocks intimately associated with mineralization primarily consist of various amphiboles (gedrite, tremolite and hornblende), gahnite, biotite, garnet, cordierite, carbonate and rare högbomite. The Zn/Cd ratios of sphalerite (44 to 307) in deposits in the DGMT fall within the range of global volcanogenic massive sulphide (VMS) deposits but overlap with sphalerite from sedimentary exhalative (Sedex) deposits. Sulphur isotope values of sulphides (δ34S = −3.3 to +6.5) suggest sulphur was largely derived from magmatic sources, and that variations in isotopic values resulting from thermochemical sulphate reduction are due to small differences in physicochemical conditions. The preferred genetic model is for the deposits to be bimodal-mafic (Gunnison) to mafic-siliciclastic VMS deposits (Cotopaxi, Cinderella-Bon Ton, DGMT).

Publisher

Cambridge University Press (CUP)

Subject

Geology

Reference109 articles.

1. Characteristics and implications of ca. 1.4 Ga deformation across a Proterozoic mid-crustal section, Wet Mountains, Colorado, USA

2. A Sim investigation of REE chemistry of garnet in garnetite associated with the Broken Hill Pb-Zn-Ag orebodies, Australia

3. High-precision EA-IRMS analysis of S and C isotopes in geological materials

4. The genesis of metamorphosed Paleoproterozoic massive sulfide occurrences in central Colorado: geological, mineralogical and sulfur isotope constraints;Berke;Geological Society of America Abstracts with Programs,2022

5. Minerals of Colorado: A 100-year record;Eckel;United States Geological Survey Bulletin,1961

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3