Tectonic evolution of the Caledonian orogeny in Scotland: a review based on the timing of magmatism, metamorphism and deformation

Author:

Searle Michael P.ORCID

Abstract

AbstractClassic tectonic models for the Caledonian orogeny in Scotland involve Ordovician collision of Laurentia–Midland Valley arc (Grampian orogeny), followed by middle Silurian collision of Laurentia–Baltica (Scandian orogeny) and 500–700 km of sinistral displacement along the Great Glen fault separating the Northern Highlands (Moine Supergroup) from the Grampian Highlands (Dalradian Supergroup). A review of the timing of magmatic and metamorphic rocks across Scotland allows a simpler explanation that fits with a classic Himalayan-style continent–island arc–continent collision. Late Cambrian – Early Ordovician NW-directed ophiolite obduction (Highland Border complex) coincided with the ending of stable continental shelf sedimentation along the eastern margin of Laurentia. Following collision between Laurentia and the Midland Valley arc–microcontinent in Early Ordovician time, crustal thickening and shortening led to almost continuous regional metamorphism from c. 470 to 420 Ma, rather than two discrete ‘orogenies’ (Grampian, Scandian). U–Pb monazite and garnet growth ages indicating prograde metamorphism, and S-type granites related to melting of crustal protoliths are coeval in the Grampian and Northern Highlands terranes. There is no evidence that the Great Glen fault was a terrane boundary, and strike-slip shearing post-dated emplacement of Silurian – Early Devonian granites. Late orogenic alkaline granites (c. 430–405 Ma) in both Moine and Dalradian terranes are not associated with subduction. They are instead closely related to regional alkaline appinite–lamprophyric magmatism resulting from simultaneous melting of lower crust and enriched lithospheric mantle. Caledonian deformation and metamorphism in northern Scotland, with continuous SE-directed subduction, show geometry and time scales that are comparable to the Cenozoic India–Kohistan arc–Asia collisional Himalayan orogeny.

Publisher

Cambridge University Press (CUP)

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3