Contextual relationship between mechanical heterogeneity and dyking: constraints from magma emplacement dynamics of the ca. 2.21 Ga Anantapur–Kunigal mafic dyke swarm, Dharwar Craton, India

Author:

Datta Srinjoy,Samal Amiya K.ORCID,Banerjee SayandeepORCID,Srivastava Rajesh K.ORCID

Abstract

Abstract Mafic dykes are typically emplaced through primary hydraulic fracturing of undeformed crust or may make use of pre-existing crustal inhomogeneities, representing the plumbing systems of a large igneous province. The Eastern Dharwar Craton has dense exposures of several generations of Paleoproterozoic mafic dyke swarms ranging from ca. 2.37 Ga to ca. 1.79 Ga. Herein, using anisotropy of magnetic susceptibility fabric data of mafic dykes and associated host granites, the emplacement systematics of the NW- to W-trending ca. 2.21 Ga Anantapur–Kunigal dyke swarm, displaying a radiating geometry, have been studied to understand magma flow dynamics. A low-angle relationship between the silicate and opaque fabrics and good correlation with magnetic lineation, identified via petrographic studies and shape preferred orientation analyses of multiple oriented thin sections, suggest a primary flow-related magnetic anisotropy for the studied dyke samples. The classic subparallel relationship between the trend of the dyke planes and magnetic fabric of the associated host granites suggests that the radiating geometry of the ca. 2.21 Ga dyke swarm was supported by a favourable pre-existing structural grain of the country rock. We interpret the magma for the studied dyke swarm was fed laterally from a distant plume. It was emplaced as laterally propagating primary dyke fractures as well as injected into the pre-existing subparallel crustal inhomogeneities. Corroborating all these inferences, a detailed emplacement model for ca. 2.21 Ga Anantapur–Kunigal dyke swarm is also proposed.

Publisher

Cambridge University Press (CUP)

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3