Revealing the Character of Orbits in a Binary System Consisting of a Primary Galaxy and a Satellite Companion

Author:

Zotos Euaggelos E.

Abstract

AbstractIn this article, we present a galactic gravitational model of three degrees of freedom (3D), in order to study and reveal the character of the orbits of the stars, in a binary stellar system composed of a primary quiet or active galaxy and a small satellite companion galaxy. Our main dynamical analysis will be focused on the behaviour of the primary galaxy. We investigate in detail the regular or chaotic nature of motion, in two different cases: (i) the time-independent model in both 2D and 3D dynamical systems and (ii) the time-evolving 3D model. For the description of the structure of the 2D system, we use the classical method of the Poincaré (x, px), y = 0, py < 0 phase plane. In order to study the structure of the phase space of the 3D system, we take sections in the plane y = 0 of the 3D orbits, whose initial conditions differ from the plane parent periodic orbits, only by the z component. The set of the four-dimensional points in the (x, px, z, pz) phase space is projected on the (z, pz) plane. The maximum Lyapunov characteristic exponent is used in order to make an estimation of the chaoticity of our galactic system, in both 2D and 3D dynamical models. Our numerical calculations indicate that the percentage of the chaotic orbits increases when the primary galaxy has a dense and massive nucleus. The presence of the dense galactic core also increases the stellar velocities near the center of the galaxy. Moreover, for small values of the distance R between the two bodies, low-energy stars display chaotic motion, near the central region of the galaxy, while for larger values of the distance R, the motion in active galaxies is entirely regular for low-energy stars. Our simulations suggest that in galaxies with a satellite companion, the chaotic nature of motion is not only a result of the galactic interaction between the primary galaxy and its companion, but also a result caused by the presence of the dense nucleus in the core of the primary galaxy. Theoretical arguments are presented in order to support and interpret the numerically derived outcomes. Furthermore, we follow the 3D evolution of the primary galaxy, when mass is transported adiabatically from the disk to the nucleus. Our numerical results are in satisfactory agreement with observational data obtained from the M51-type binary stellar systems. A comparison between the present research and similar and earlier work is also made.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3