The Dawes Review 2: Nucleosynthesis and Stellar Yields of Low- and Intermediate-Mass Single Stars

Author:

Karakas Amanda I.,Lattanzio John C.

Abstract

AbstractThe chemical evolution of the Universe is governed by the chemical yields from stars, which in turn are determined primarily by the initial stellar mass. Even stars as low as 0.9 Mcan, at low metallicity, contribute to the chemical evolution of elements. Stars less massive than about 10 Mexperience recurrent mixing events that can significantly change the surface composition of the envelope, with observed enrichments in carbon, nitrogen, fluorine, and heavy elements synthesized by the slow neutron capture process (thes-process). Low- and intermediate-mass stars release their nucleosynthesis products through stellar outflows or winds, in contrast to massive stars that explode as core-collapse supernovae. Here we review the stellar evolution and nucleosynthesis for single stars up to ~ 10 Mfrom the main sequence through to the tip of the asymptotic giant branch (AGB). We include a discussion of the main uncertainties that affect theoretical calculations and review the latest observational data, which are used to constrain uncertain details of the stellar models. We finish with a review of the stellar yields available for stars less massive than about 10 Mand discuss efforts by various groups to address these issues and provide homogeneous yields for low- and intermediate-mass stars covering a broad range of metallicities.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3