Re. I. Understanding galaxy sizes, associated luminosity densities, and the artificial division of the early-type galaxy population

Author:

Graham Alister W.ORCID

Abstract

AbstractFor decades, the deceptive simplicity of the radius $R_{\rm e}$ , enclosing an arbitrary 50% of a galaxy’s light, has hamstrung the understanding of early-type galaxies (ETGs). Half a century ago, using these ‘effective half-light’ radii from de Vaucouleurs’ $R^{1/4}$ model, Sérsic reported that bright ETGs follow the relation $\mathfrak{M}_B\propto2.5\log R_{\rm e}$ ; and consequently, one has that $\langle\mu\rangle_{\rm e}\propto2.5\log R_{\rm e}$ and $\mu_{\rm e}\propto2.5\log R_{\rm e}$ , where $\mu_{\rm e}$ and $\langle\mu\rangle_{\rm e}$ are the effective surface brightness at $R_{\rm e}$ and the mean effective surface brightness within $R_{\rm e}$ , respectively. Sérsic additionally observed an apparent transition which led him to advocate for a division between what he called dwarf and giant ETGs; a belief frequently restated to occur at $\mathfrak{M}_B \approx -18$ mag or $n\approx 2.5$ . Here, the location of this false dichotomy in diagrams using ‘effective’ parameters is shown to change by more than 3 mag simply depending on the arbitrary percentage of light used to quantify a galaxy’s size. A range of alternative radii are explored, including where the projected intensity has dropped by a fixed percentage plus a battery of internal radii, further revealing that the transition at $\mathfrak{M}_B \approx -18$ mag is artificial and does not demark a boundary between different physical processes operating on the ETG population.The above understanding surrounding the effective radius $R_{\rm e}$ is of further importance because quantities such as dynamical mass $\sigma^2R/G$ , gravitational-binding energy $GM^2/R$ , acceleration $GM/R^2$ , and the ‘Fundamental Plane’ also depend on the arbitrary percentage of light used to define R, with implications for dark matter estimates, galaxy formation theories, compact massive galaxies, studies of peculiar velocity flows, and more. Finally, some of the vast literature which has advocated for segregating the ETG population at $\mathfrak{M}_B \approx -18$ mag ( $M\approx1$ $2\times10^{10}\,{\rm M}_{\odot}$ ) is addressed, and it is revealed how this pervasive mindset has spilled over to influence both the classical bulge versus pseudobulge debate and recently also correlations involving supermassive black hole masses.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3