KOI-256’s Magnetic Activity Under the Influence of the White Dwarf

Author:

Yoldaş Ezgi,Dal Hasan Ali

Abstract

AbstractWe present the findings about chromospheric activity nature of KOI-256 obtained from the Kepler Mission data. First, it was found that there are some sinusoidal variations out-of-eclipses due to cool spot activity. The sinusoidal variations modelled by the spotmodel program indicate that the active component has two different active regions. Their longitudinal variation revealed that one of them has a migration period of 3.95 yrs, while the other has a migration period of 8.37 yrs. Second, 225 flares were detected from the short cadence data in total. The parameters, such as increase (Tr) and decay (Td) times, total flare time (Tt), equivalent durations (P), were calculated for each flare. The distribution of equivalent durations versus total flare times in logarithmic scale is modelled to find flare activity level. The Plateau value known as the saturation level of the active component was calculated to be 2.3121 ± 0.0964 s, and the Half-life value, which is required flare total time to reach the saturation, was computed to be 2233.6 s. In addition, the frequency of N1, which is the number of flares per an hour in the system, was found to be 0.05087 h−1, while the flare frequency N2 that the flare-equivalent duration emitting per an hour was found to be 0.00051. Contrary to the spot activity, it has been found that the flares are in tends to appear at specific phases due to the white dwarf component.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Why are new sources of cosmic rays nearby the solar system needed?;Advances in Space Research;2022-11

2. Chromospheric activity behavior of an eclipsing binary system KOI 68AB;Astronomische Nachrichten;2019-07

3. High-level magnetic activity nature of the eclipsing binary KIC 12418816;Monthly Notices of the Royal Astronomical Society;2017-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3