Fireball streak detection with minimal CPU processing requirements for the Desert Fireball Network data processing pipeline

Author:

Towner Martin C.ORCID,Cupak Martin,Deshayes Jean,Howie Robert M.,Hartig Ben A. D.,Paxman Jonathan,Sansom Eleanor K.,Devillepoix Hadrien A. R.ORCID,Jansen-Sturgeon Trent,Bland Philip A.

Abstract

Abstract The detection of fireballs streaks in astronomical imagery can be carried out by a variety of methods. The Desert Fireball Network uses a network of cameras to track and triangulate incoming fireballs to recover meteorites with orbits and to build a fireball orbital dataset. Fireball detection is done on-board camera, but due to the design constraints imposed by remote deployment, the cameras are limited in processing power and time. We describe the processing software used for fireball detection under these constrained circumstances. Two different approaches were compared: (1) A single-layer neural network with 10 hidden units that were trained using manually selected fireballs and (2) a more traditional computational approach based on cascading steps of increasing complexity, whereby computationally simple filters are used to discard uninteresting portions of the images, allowing for more computationally expensive analysis of the remainder. Both approaches allowed a full night’s worth of data (over a thousand 36-megapixel images) to be processed each day using a low-power single-board computer. We distinguish between large (likely meteorite-dropping) fireballs and smaller fainter ones (typical ‘shooting stars’). Traditional processing and neural network algorithms both performed well on large fireballs within an approximately 30 000-image dataset, with a true positive detection rate of 96% and 100%, respectively, but the neural network was significantly more successful at smaller fireballs, with rates of 67% and 82%, respectively. However, this improved success came at a cost of significantly more false positives for the neural network results, and additionally the neural network does not produce precise fireball coordinates within an image (as it classifies). Simple consideration of the network geometry indicates that overall detection rate for triangulated large fireballs is calculated to be better than 99.7% and 99.9%, by ensuring that there are multiple double-station opportunities to detect any one fireball. As such, both algorithms are considered sufficient for meteor-dropping fireball event detection, with some consideration of the acceptable number of false positives compared to sensitivity.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3