Discovery of the Most Ultra-Luminous QSO Using GAIA, SkyMapper, and WISE

Author:

Wolf Christian,Bian Fuyan,Onken Christopher A.,Schmidt Brian P.,Tisserand Patrick,Alonzi Noura,Hon Wei Jeat,Tonry John L.

Abstract

AbstractWe report the discovery of the ultra-luminous quasi-stellar object SMSS J215728.21−360215.1 with magnitude z = 16.9 and W4 = 7.42 at redshift 4.75. Given absolute magnitudes of M145, AB = −29.3, M300, AB = −30.12, and logLbol/Lbol, ⊙ = 14.84, it is the quasi-stellar object with the highest unlensed UV-optical luminosity currently known in the Universe. It was found by combining proper-motion data from Gaia DR2 with photometry from SkyMapper DR1 and the Wide-field Infrared Survey Explorer. In the GAIA database, it is an isolated single source and thus unlikely to be strongly gravitationally lensed. It is also unlikely to be a beamed source as it is not discovered in the radio domain by either NRAO-VLA Sky Survey or Sydney University Molonglo Southern Survey. It is classed as a weak-emission-line quasi-stellar object and possesses broad absorption line features. A lightcurve from ATLAS spanning the time from 2015 October to 2017 December shows little sign of variability.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The accretion of a solar mass per day by a 17-billion solar mass black hole;Nature Astronomy;2024-02-19

2. XQz5: a new ultraluminous z ∼ 5 quasar legacy sample;Monthly Notices of the Royal Astronomical Society;2023-11-09

3. Probing quasar viewing angle with the variability structure function;Monthly Notices of the Royal Astronomical Society;2023-06-07

4. Lyman-Alpha Forest: Features, Detection Scenarios and Simulations;Highlights in Science, Engineering and Technology;2023-03-16

5. Characterising SMSS J2157–3602, the most luminous known quasar, with accretion disc models;Monthly Notices of the Royal Astronomical Society;2023-03-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3