The Relation between Star-Formation Rate and Stellar Mass of Galaxies atz~ 1–4

Author:

Katsianis A.,Tescari E.,Wyithe J. S. B.

Abstract

AbstractThe relation between the star-formation Rate and stellar mass (M) of galaxies represents a fundamental constraint on galaxy formation, and has been studied extensively both in observations and cosmological hydrodynamic simulations. However, the observed amplitude of the star-formation rate—stellar mass relation has not been successfully reproduced in simulations, indicating either that the halo accretion history and baryonic physics are poorly understood/modelled or that observations contain biases. In this paper, we examine the evolution of the SFR −Mrelation ofz~ 1–4 galaxies and display the inconsistency between observed relations that are obtained using different techniques. We employ cosmological hydrodynamic simulations from various groups which are tuned to reproduce a range of observables and compare these with a range of observed SFR −Mrelations. We find that numerical results are consistent with observations that use Spectral Energy Distribution techniques to estimate star-formation rates, dust corrections, and stellar masses. On the contrary, simulations are not able to reproduce results that were obtained by combining only UV and IR luminosities (UV+IR). These imply star-formation rates at a fixed stellar mass that are larger almost by a factor of 5 than those of Spectral Energy Distribution measurements forz~ 1.5–4. Forz< 1.5, the results from simulations, Spectral Energy Distribution fitting techniques and IR+UV conversion agree well. We find that surveys that preferably select star-forming galaxies (e.g. by adopting Lyman-break or blue selection) typically predict a larger median/average star-formation rate at a fixed stellar mass especially for high mass objects, with respect to mass selected samples and hydrodynamic simulations. Furthermore, we find remarkable agreement between the numerical results from various authors who have employed different cosmological codes and run simulations with different resolutions. This is interesting for two reasons. (A) simulations can produce realistic populations of galaxies within representative cosmological volumes even at relatively modest resolutions. (B) It is likely that current numerical codes that rely on similar subgrid multiphase interstellar medium models and are tuned to reproduce statistical properties of galaxies, produce similar results for the SFR −Mrelation by construction, regardless of resolution, box size and, to some extent, the adopted feedback prescriptions.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3