Abstract
AbstractWe present results of a supernova lightcurve population synthesis, predicting the range of possible supernova lightcurves arising from a population of progenitor stars that include interacting binary systems. We show that the known diversity of supernova lightcurves can be interpreted as arising from binary interactions. Given detailed models of the progenitor stars, we are able to the determine what parameters within these stars determine the shape of their supernova lightcurve. The primary factors are the mass of supernova ejecta and the mass of hydrogen in the final progenitor. We find that there is a continuum of lightcurve behaviour from type IIP, IIL, to IIb supernovae related to the range of hydrogen and ejecta masses. Most type IIb supernovae arise from a relatively narrow range of initial masses from 10 to 15 M⊙. We also find a few distinct lightcurves that are the result of stellar mergers.
Publisher
Cambridge University Press (CUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献