The Dawes Review 1: Kinematic Studies of Star-Forming Galaxies Across Cosmic Time

Author:

Glazebrook Karl

Abstract

AbstractThe last seven years have seen an explosion in the number of Integral Field galaxy surveys, obtaining resolved 2D spectroscopy, especially at high-redshift. These have taken advantage of the mature capabilities of 8–10 m class telescopes and the development of associated technology such as AO. Surveys have leveraged both high spectroscopic resolution enabling internal velocity measurements and high spatial resolution from AO techniques and sites with excellent natural seeing. For the first time, we have been able to glimpse the kinematic state of matter in young, assembling star-forming galaxies and learn detailed astrophysical information about the physical processes and compare their kinematic scaling relations with those in the local Universe. Observers have measured disc galaxy rotation, merger signatures, and turbulence-enhanced velocity dispersions of gas-rich discs. Theorists have interpreted kinematic signatures of galaxies in a variety of ways (rotation, merging, outflows, and feedback) and attempted to discuss evolution vs. theoretical models and relate it to the evolution in galaxy morphology. A key point that has emerged from this activity is that substantial fractions of high-redshift galaxies have regular kinematic morphologies despite irregular photometric morphologies and this is likely due to the presence of a large number of highly gas-rich discs. There has not yet been a review of this burgeoning topic. In this first Dawes review, I will discuss the extensive kinematic surveys that have been done and the physical models that have arisen for young galaxies at high-redshift.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference382 articles.

1. Tyson J. A. 2002, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conf. Ser. Vol. 4836, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ed. J. A. Tyson & S. Wolff, 10

2. PHIBSS: MOLECULAR GAS CONTENT AND SCALING RELATIONS INz∼ 1-3 MASSIVE, MAIN-SEQUENCE STAR-FORMING GALAXIES

3. THE A2667 GIANT ARC ATz= 1.03: EVIDENCE FOR LARGE-SCALE SHOCKS AT HIGH REDSHIFT

4. Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data

Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3