Abstract
Abstract
This paper is devoted to probabilistic cellular automata (PCAs) on N,Z or Z / nZ, depending on two neighbors with a general alphabet E (finite or infinite, discrete or not). We study the following question: under which conditions does a PCA possess a Markov chain as an invariant distribution? Previous results in the literature give some conditions on the transition matrix (for positive rate PCAs) when the alphabet E is finite. Here we obtain conditions on the transition kernel of a PCA with a general alphabet E. In particular, we show that the existence of an invariant Markov chain is equivalent to the existence of a solution to a cubic integral equation. One of the difficulties in passing from a finite alphabet to a general alphabet comes from the problem of measurability, and a large part of this work is devoted to clarifying these issues.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献