Author:
Georgiou Nicholas,Menshikov Mikhail V.,Mijatović Aleksandar,Wade Andrew R.
Abstract
AbstractFamously, a d-dimensional, spatially homogeneous random walk whose increments are nondegenerate, have finite second moments, and have zero mean is recurrent if d∈{1,2}, but transient if d≥3. Once spatial homogeneity is relaxed, this is no longer true. We study a family of zero-drift spatially nonhomogeneous random walks (Markov processes) whose increment covariance matrix is asymptotically constant along rays from the origin, and which, in any ambient dimension d≥2, can be adjusted so that the walk is either transient or recurrent. Natural examples are provided by random walks whose increments are supported on ellipsoids that are symmetric about the ray from the origin through the walk's current position; these elliptic random walks generalize the classical homogeneous Pearson‒Rayleigh walk (the spherical case). Our proof of the recurrence classification is based on fundamental work of Lamperti.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献