Abstract
ABSTRACTRadiocarbon (14C) dating of anthropogenic carbonates (CaCO3) such as ash, lime plaster and lime mortar, has proven a difficult task due to the occurrence of a number of contaminants embedded within the CaCO3 pyrogenic binder. These include 14C-free geologic components and/or secondary phases bearing an unknown amount of 14C, and thus the alteration of the original pyrogenic isotopic signature of the material results in major age offsets when carbon recovery is performed through acid hydrolysis. Here we present a characterization/quantification approach to anthropogenic carbonates that includes Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, thin section petrography, thermogravimetric analysis and scanning electron microscopy coupled with high-resolution cathodoluminescence, with which we identified the pyrogenic CaCO3 fraction in an aerial lime plaster and two hydraulic mortars. The preserved pyrogenic component was then isolated by density separation and its purity checked again using FTIR. Carbon was recovered through thermal decomposition in vacuum. The resulting 14C age matches the expected age of the lime plaster, whereas hydraulic mortars are slightly offset due to the carbonation of calcium hydroxide lumps. This approach highlights the importance of a dedicated characterization strategy prior to dating and may be applied to aerial lime plasters to obtain accurate ages.
Publisher
Cambridge University Press (CUP)
Subject
General Earth and Planetary Sciences,Archeology
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献