A HIGH-RESOLUTION CHRONOLOGY FOR THE PALATIAL COMPLEX OF XALLA IN TEOTIHUACAN, MEXICO, COMBINING RADIOCARBON AGES AND ARCHAEOMAGNETIC DATES IN A BAYESIAN MODEL

Author:

Beramendi-Orosco Laura EORCID,Gonzalez-Hernandez Galia,Soler-Arechalde Ana M,Manzanilla Linda R

Abstract

ABSTRACTTeotihuacan is one of the most studied archaeological sites in Mesoamerica because of its exceptional size and urban planning; however, its last years of occupation and abandonment are still under debate. We report a high-resolution chronology for the Xalla complex integrating archaeomagnetic dates, radiocarbon (14C) ages, and detailed archaeological information about sample type and context in a Bayesian model. The model includes 42 14C ages and 7 archaeomagnetic dates grouped in 6 phases, including samples from collapsed roofs with 14C ages earlier than expected, suggesting a problem of inbuilt age. The archaeomagnetic dates on lime plasters were classified in unburned samples, related to the time of construction, and burned samples, related to the Big Fire associated to the abandonment of Teotihuacan. The modeled 14C ages resulted in shorter intervals, with the possibility of differentiating the construction phases, confirming that big beams had inbuilt age. Further, combining the two dating methods and classifying lime plaster samples in burned and unburned, it was possible to date different events within the same archaeological context. It is concluded that by combining these two dating methods and understanding the moment that each sample is dating, it is possible to obtain solid and precise chronologies.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Archaeology

Reference30 articles.

1. Immigration and the Ancient City of Teotihuacan in Mexico: a Study Using Strontium Isotope Ratios in Human Bone and Teeth

2. Teotihuacan

3. The Last Years of Teotihuacan Dominance

4. Lanos, P , Dufresne, P. 2008. Bayesian archaeomagnetic and radiocarbon dating: the RenDate software. Radiocarbon and Archaeology, 5th International Symposium. Zurich, Switzerland.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3