Direct adventitious shoot regeneration system of Euonymus fortunei var. radicans and its genetic transformation mediated by Agrobacterium tumefaciens

Author:

Ai-Qin Shang,Ying Chen,Liang-Jun Zhao,Ying-Chuan Tian

Abstract

AbstractUsing hypocotyls as explants, the adventitious shoots of Euonymus fortunei var. radicans were differentiated directly from basal Murashige and Skoog (MS) medium supplemented with different plant growth regulators. The highest regeneration frequency was obtained with MS medium containing 0.5 mg/l 6-benzylaminopurine (BAP) and 0.01 mg/l α-naphthalene acetic acid (NAA). A regeneration frequency of 92% and 4.2 shoots per explant were obtained after 30 days of culture. The binary vector pBCGm, containing Galanthus nivalis agglutinin (GNA) gene, was introduced into Agrobacterium tumefaciens LBA4404. Hypocotyl segments of E. fortunei var. radicans were infected through A. tumefaciens-mediated transformation. Polymerase chain reaction (PCR) and PCR–Southern blot analysis results confirmed that the GNA gene was integrated into the genome of transgenic plants. The highest transformation frequency was obtained with un-precultured explants infected for 30 min with OD600=0.6 Agrobacterium tumefaciens, and co-cultivated for 3 days.

Publisher

Cambridge University Press (CUP)

Subject

Agronomy and Crop Science,Biotechnology

Reference15 articles.

1. A rapid -mediated transformation of L. by using direct shoot regeneration from hypocotyl explants

2. Agrobacterium-mediated transformation of apple (Malus x domestica Borkh.): an assessment of factors affecting gene transfer efficiency during early transformation steps

3. Study on transformation of snowdrop lectin gene to Chrysanthemum and Aphis resistance of the transgenic plants;Wang;Acta Genetica Sinica,2004

4. Introduction of snowdrop lectin gene into maize elite inbred lines via Agrobacterium tumefaciens;Quan;Acta Botanica Boreali-Occidentalia Sinica,2004

5. Aphid-resistant transgenic tobacco plants expressing modified gna gene;Yuan;Acta Botanica Sinica,2001

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3