Upgrade of the CO2 Direct Absorption Method for Low-Level 14C Liquid Scintillation Counting

Author:

Canducci Chiara,Bartolomei Paolo,Magnani Giuseppe,Rizzo Antonietta,Piccoli Angela,Tositti Laura,Esposito Massimo

Abstract

A new system for CO2 absorption and liquid scintillation counting (LSC) was designed and developed along with its inherent measurement protocol for radiocarbon analysis in gaseous emissions, fuels, and biobased products. CO2 is chemically trapped as a carbamate in a suitable absorbing solution (3-methoxy-propyl-amine), gravimetrically measured, and analyzed by LSC (using a QuantulusTM 1220) to determine the 14C content. The use of cryogenic traps and a pressure transducer in the system prevents the need for closed-loop recirculation or additional steps to maximize CO2 capture in a short amount of time. The choice of PTFE vials used both for CO2 pretreatment and subsequent LSC analysis provides the opportunity to significantly reduce the background counting down to 40% with respect to the low-40K glass vials. This upgrade resulted in improving the maximum detectable age back to 36,000 yr BP in routine measurements. This method therefore turns out to be flexible enough to be applied for 14C dating as well as to differentiate between modern and fossil carbon.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Archaeology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3