Author:
Ding P,Shen C D,Yi W X,Wang N,Ding X F,Fu D P,Liu K X
Abstract
From October 2010 to November 2011, the urban atmospheric CO2 concentration in Guangzhou ranged from 550 to 460 ppm, with mean monthly concentration fluctuating between 530 and 470 ppm. A lower concentration was observed in summer and autumn, while a higher concentration occurred in spring and winter. The urban atmospheric CO2 δ13C value varied between −9.00 and −13.10%, with mean monthly value fluctuating between −9.60 and −11.80%. There was no significant relationship between the CO2 concentration and δ13C value, reflecting the influence from the fossil-fuel-derived CO2 on the urban atmospheric CO2. The urban atmospheric CO2 Δ14C value fluctuated dramatically from 29.1 ± 2.5% to −85.2 ± 3. 1%, with a mean annual value of −16.4 ± 3.0%. A similar seasonal variation of Δ14C value with the concentrations was observed: the higher Δ14C values mainly appeared in summer and autumn (July to September), with a mean value of about −5.2 ± 2.9%, while lower Δ14C values occurred in spring and winter (December to April), about −27.1 ± 3.2% average. Based on the atmospheric Δ14C values, the calculated fossil-fuel-derived CO2 concentrations range between 1 and 58 ppm, with the mean annual concentration around 24 ppm. Similarly, a lower fossil-fuel-derived CO2 concentration appeared in summer and autumn (July to September) with a mean value of ∼17 ppm, while the higher fossil-fuel-derived CO2 concentration occurred in spring and winter (December to April) with an average value of ∼29 ppm. A comparison of the CO2 concentrations before and after the Guangzhou Asian Games (in November 2010) and the Spring Festival of 2011 confirmed that human activities can greatly decrease the fossil-fuel-derived CO2 emissions to the urban atmosphere in Guangzhou.
Publisher
Cambridge University Press (CUP)
Subject
General Earth and Planetary Sciences,Archeology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献