Concentration of Radiocarbon in Soil-Respired CO2 Flux: Data-Model Comparison for Three Different Ecosystems in Southern Poland

Author:

Gorczyca Z,Kuc T,Rozanski K

Abstract

We report and compare the results of long-term observations (1998–2006) of monthly mean soil CO2 fluxes and their carbon isotope composition, carried out at 3 sites with contrasting characteristics: 1) a grassland site located in the urban area of Krakow, southern Poland, which was exposed to anthropogenic impact for more than a century; 2) a mixed forest site; and 3) cultivated agricultural field site. A closed-chamber, dynamic sampling system was used to collect monthly cumulative samples of soil-respired CO2. The CO2 collected at the mixed forest site was enriched in 14C with respect to European free-atmosphere continental 14CO2 background (high-altitude station Jungfraujoch in Swiss Alps) by approximately 40%, while the urban site revealed 14C depletion by ∼30% against the same reference. The Δ14C values observed at the agricultural site were lying in between, clustering along the regional reference atmospheric Δ14CO2 trend curve. The Δ14C values of soil-respired CO2 at the urban site turned out to be indistinguishable from the Δ14CO2 values in the local atmosphere. For the estimation of mean turnover time of soil carbon for each of the monitored sites, we used a multicompartment model (MCM) accounting for input of carbon to the soil profile via deposition of fresh organic matter, as well as 3 different sources of CO2 in the soil profile: 1) root respiration; 2) “fast”; and 3) “slow” pools of soil carbon. The estimated mean turnover time of carbon in the “fast” carbon pool was ∼14 yr for both urban grassland and mixed forest sites, and ∼22 yr for the cultivated agricultural field. From the observed differences in Δ14C values of the measured fluxes of soil-respired CO2, we conclude that 14C content of the biogenic component in the local atmospheric CO2 is site-specific and may differ significantly from the regional atmospheric background Δ14CO2 value. Therefore, the assumption widely used in 14C-based assessments of the fossil-fuel contribution local atmospheric CO2 load, stating that 14C concentration in the biogenic CO2 component is equal to that of regional atmospheric reference value, needs to be carefully evaluated on a case-by-case basis.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Archeology

Reference38 articles.

1. Annual variation in soil respiration in selected areas of the temperate zone

2. Seasonal variability of the soil CO2 flux and its isotopic composition in southern Poland;Gorczyca;Nukleonika,2003

3. A multi-layer box model of carbon dynamics in soil;Kuc;Nukleonika,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3