Abstract
Radiocarbon age determinations of wood charcoal are commonly used to date past forest fire events, even though such ages should be greater than the fire event due to the age of the wood at the time of burning. The difference in the14C-derived age of charcoal and the time-since-fire (the “inbuilt age”) may be considerable in some vegetation types and thus must be estimated before interpreting fire dates. Two methods were used to estimate the potential range of inbuilt age of soil charcoal dated to determine ages of forest fires on the west coast of Vancouver Island (Canada). First, 2614C ages on charcoal in surficial soil were compared directly with ages of forest fire determined by tree-ring counts, suggesting inbuilt ages of 0–670 years. Second, a simulation model that uses estimated fuel loads, fuel consumption, charcoal production, and the ages of charred wood (time since wood formation), suggests that the combination of slow growth rates and slow decay rates of certain species can account for inbuilt ages of more than 400 years in this forest type. This level of inbuilt age is large enough such that the actual age of a fire may not occur within the 2σ confidence interval of a calibrated charcoal14C age determination, and thus significantly affect the interpretation of fire dates. A method is presented to combine the error of a calibrated14C age determination with the error due to inbuilt age such that the larger adjusted error encompasses the actual age of the fire.
Publisher
Cambridge University Press (CUP)
Subject
General Earth and Planetary Sciences,Archeology
Cited by
165 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献