Estimating Turnover of Soil Organic Carbon Fractions Based on Radiocarbon Measurements

Author:

Bruun Sander,Six Johan,Jensen Lars S,Paustian Keith

Abstract

In this paper, we examine 3 different models used to estimate turnover of soil organic carbon (SOC) fractions using radiocarbon measurements: one conventional carbon dating model and two bomb 14C models. One of the bomb 14C models uses an atmospheric 14C record for the period 22,050 BC to AD 2003 and is solved by numerical methods, while the other assumes a constant 14C content of the atmosphere and is solved analytically. The estimates of SOC turnover obtained by the conventional 14C dating model differed substantially from those obtained by the bomb 14C models, which we attribute to the simplifying assumption of the conventional 14C model that the whole SOC fraction is of the same age. The assumptions underlying the bomb 14C models are more applicable to SOC fractions; therefore, the calculated turnover times are considered to be more reliable. We used Monte Carlo simulations to estimate the uncertainties of the turnover times calculated with the numerically solved 14C model, accounting not only for measurement errors but also for uncertainties introduced from assumptions of constant input and uncertainties in the 14C content of the CO2 assimilated by plants. The resulting uncertainties depend on systematic deviations in the atmospheric 14C record for SOC fractions with a fast turnover. Therefore, the use of the bomb 14C models can be problematic when SOC fractions with a fast turnover are analyzed, whereas the relative uncertainty of the turnover estimates turned out to be smaller than 30% when the turnover time of the SOC fractions analyzed was longer than 30 yr, and smaller than 15% when the turnover time was longer than 100 yr.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Archeology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3