Accelerator Mass Spectrometry: From Nuclear Physics to Dating

Author:

Kutschera Walter

Abstract

One of my former teachers in nuclear physics, H Morinaga, once pointed out to me that essentially all the fundamental discoveries in nuclear physics were done without the use of accelerators. At first, this statement seemed extremely exaggerated, but now I think there is much truth in it. Once we build an instrument to investigate a specific problem we have already realized the existence of the problem and do not need the instrument to discover it. It is almost inevitable that the most interesting discoveries with a new technique will be made in fields for which the technique was not invented. Accelerators, built for nuclear physics, produced a great amount of data on nuclear structure and forces but the most fundamental discoveries were made in elementary particle physics. In any case, for almost 40 years the sole purpose of accelerators was to deliver beams of ever increasing energy and versatility to perform experiments after the accelerator. The analytic properties of accelerators were almost completely ignored even after the very early use of the Lawrence cyclotron at Berkeley as a mass spectrometer to discover 3He in nature (Alvarez and Cornog, 1939 a; b). The enormous analytic power of accelerators is now fully recognized, but the joy of the revival is mixed with some disappointment that the great prospects for studying 14C problems (Muller, 1977; Bennet et al, 1977; Nelson, Korteling, and Stott, 1977) have not yet been fulfilled. Fortunately, some of the papers of this conference show that a big step forward has been taken. But in view of what I said before it is not surprising that most of the studies were actually done with other radioisotopes.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Archaeology

Reference44 articles.

1. Measurement of 10Be in 1,000- and 5,000-year-old Antarctic ice

2. Klein J , Middleton R , and Stephens WE , 1981, Search for anomalously heavy isotopes, in : Argonne, Illinois, Argonne Natl Lab Rept ANL/PHY-81-1, p 136–153.

3. Search for stable heavy massive particles of positive integral charge

4. Beryllium-10 in continental sediments

5. Smith PF , Bennet JRJ , Homer GJ , Lewin JD , Walford HE , and Smith WA , 1981, A search for anomalous hydrogen in enriched D2O, using a time-of-flight spectrometer, in : Argonne, Illinois, Argonne Natl Lab Rept ANL/PHY-81-1, p 170–192.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mass spectrometry instruments VI: Accelerator mass spectrometry;Reference Module in Earth Systems and Environmental Sciences;2024

2. Atom counting with accelerator mass spectrometry;Reviews of Modern Physics;2023-09-28

3. Radiocarbon dating of microliter sized Hungarian Tokaj wine samples;Journal of Food Composition and Analysis;2023-05

4. Characterization of the LEMA isotope separator to measure concentrations of 10Be from atmospheric filters;Journal of Physics: Conference Series;2018-08

5. Accelerator Mass Spectrometry;Treatise on Geochemistry;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3