Modeling the Radiocarbon Reservoir Effect in Lacustrine Systems

Author:

Yu Shi-Yong,Shen Ji,Colman Steven M

Abstract

The modern water (both pre- and post-atmospheric nuclear testing) of most lakes has an anomalously old apparent radiocarbon age due to what is commonly referred to as the “reservoir effect.” In contrast to marine settings, this14C-offset phenomenon is primarily caused by pre-aged carbon discharged to lakes by rivers and/or groundwater. In this paper, a 2-component box model based on the principle of14C mass balance in lake water and in the early diagenesis zone was formulated to address the relative importance of terrestrial inputs, autochthonous production, and biogeochemical processes in the14C reservoir of a lacustrine system. The model was tested using observed data from Lake Qinghai, the largest inland water body in China. Our inverse modeling using Markov chain Monte Carlo (MCMC) techniques yields best estimates of the δ14C of DIC in river (∼118% modern) and groundwater (∼76% modern), as well as the δ14C of DOC in river water (∼70% modern) during the post-bomb era. Assuming that these parameters remain constant over time, our modeling indicates that both the DIC and DOC pool of this lake have reservoir ages of about 1500 yr for the pre-bomb era, generally consistent with estimates obtained by extrapolation of the age-depth models of 2 sediment cores to the sediment surface.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Archaeology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3