ROTH’S THEOREM FOR FOUR VARIABLES AND ADDITIVE STRUCTURES IN SUMS OF SPARSE SETS

Author:

SCHOEN TOMASZ,SISASK OLOF

Abstract

We show that if $A\subset \{1,\ldots ,N\}$ does not contain any nontrivial solutions to the equation $x+y+z=3w$, then $$\begin{eqnarray}|A|\leqslant \frac{N}{\exp (c(\log N)^{1/7})},\end{eqnarray}$$ where $c>0$ is some absolute constant. In view of Behrend’s construction, this bound is of the right shape: the exponent $1/7$ cannot be replaced by any constant larger than $1/2$. We also establish a related result, which says that sumsets $A+A+A$ contain long arithmetic progressions if $A\subset \{1,\ldots ,N\}$, or high-dimensional affine subspaces if $A\subset \mathbb{F}_{q}^{n}$, even if $A$ has density of the shape above.

Publisher

Cambridge University Press (CUP)

Subject

Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis

Reference28 articles.

1. [11] E. Croot  and O. Sisask , Notes on proving Roth’s theorem using Bogolyubov’s method, http://people.math.gatech.edu/∼ecroot/bogolyubov-roth2.pdf.

2. Green's sumset problem at density one half

3. Arithmetic Progressions in Sumsets and Lp-Almost-Periodicity

4. Roth’s theorem on progressions revisited

5. Integer Sum Sets Containing Long Arithmetic Progressions

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Translation-Invariant Equations With at Least Four Variables;International Mathematics Research Notices;2024-06-19

2. Finite Field Models in Arithmetic Combinatorics – Twenty Years On;Surveys in Combinatorics 2024;2024-06-13

3. A generalisation of Varnavides’s theorem;Combinatorics, Probability and Computing;2024-05-29

4. Roth-type theorem for quadratic system in Piatetski-Shapiro primes;Journal of Number Theory;2024-04

5. The Kelley–Meka bounds for sets free of three-term arithmetic progressions;Essential Number Theory;2023-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3