NMR-based screening in drug discovery

Author:

Hajduk Philip J.,Meadows Robert P.,Fesik Stephen W.

Abstract

1. Introduction 2112. Screening methods 2132.1 Chemical shifts 2132.2 Diffusion 2142.3 Transverse relaxation 2182.4 Nuclear Overhauser effects 2183. Strategies for drug discovery and design 2213.1 Fragment-based methods 2213.1.1 Linked-fragment approach 2213.1.2 Directed combinatorial libraries 2223.1.3 Modification of high-affinity ligands 2233.1.4 Solvent mapping techniques 2233.2 High-throughput NMR-based screening 2243.3 Enzymatic assays 2264. Discovery of novel ligands 2274.1 High-affinity ligands for FKBP 2274.2 Potent inhibitors of stromelysin 2294.3 Ligands for the DNA-binding domain of the E2 protein 2334.4 Discovery of Erm methyltransferase inhibitors 2334.5 Phosphotyrosine mimetics for SH2 domains 2365. Conclusions 2376. References 237A critical step in the drug discovery process is the identification of high-affinity ligands for macromolecular targets. Traditionally, the identification of such lead compounds has been accomplished through the high-throughout screening (HTS) of corporate compound repositories. Conventional HTS methodology has enjoyed widespread application and success in the pharmaceutical industry and, through recent technological advances in screening (Fernandes, 1998; Oldenburg et al. 1998; Silverman et al. 1998) and combinatorial chemistry (Fauchere et al. 1998; Fecik et al. 1998), these programs will continue to have a prominent role in drug discovery. However, suitable leads cannot always be found using conventional methods. This is not surprising since typical corporate libraries contain fewer than 106 compounds compared with the estimated 1050–1080 universe of compounds (Martin, 1997). In addition, most conventional assays are limited to screening libraries of compounds against proteins with known function, excluding the large number of targets becoming available from genomics research.Recently, a number of NMR-based screening methods have been employed to identify and design lead ligands for protein targets (see Table 1). These NMR-based strategies can augment ongoing conventional HTS for identifying leads and can be used to aid in lead optimization. All of these techniques take advantage of the fact that upon complex formation between a target molecule and a ligand, significant perturbations can be observed in NMR-sensitive parameters of either the target or the ligand. These perturbations can be used qualitatively to detect ligand binding or quantitatively to assess the strength of the binding interaction. In addition, some of the techniques allow the identification of the ligand binding site or which part of the ligand is responsible for interacting with the target. In this article, the current state of NMR-based screening is reviewed.

Publisher

Cambridge University Press (CUP)

Subject

Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3