Abstract
AbstractProteins and other biomolecules contain acidic and basic titratable groups that give rise to intricate charge distributions and control electrostatic interactions. ‘Charge regulation’ concerns how the proton equilibria of these sites are perturbed when approached by alien molecular matter such as other proteins, surfaces and membranes, DNA, polyelectrolytes etc. Importantly, this perturbation generates a charge response that leads to attractive intermolecular interactions that can be conveniently described by a single molecular property – the charge capacitance. The capacitance quantifies molecular charge fluctuations, i.e. it is the variance of the mean charge and is an intrinsic property on par with the net charge and the dipole moment. It directly enters the free energy expression for intermolecular interactions and can be obtained experimentally from the derivative of the titration curve or theoretically from simulations. In this review, we focus on the capacitance concept as a predictive parameter for charge regulation and demonstrate how it can be used to estimate the interaction of a protein with other proteins, polyelectrolytes, membranes as well as with ligands.
Publisher
Cambridge University Press (CUP)
Cited by
138 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献