Determination of thermodynamics and kinetics of RNA reactions by force

Author:

Tinoco Ignacio,T. X. Li Pan,Bustamante Carlos

Abstract

1. Introduction 3262. Instrumentation 3282.1 Instruments to study mechanical properties of RNA 3282.1.1 AFM 3282.1.2 Magnetic tweezers 3282.1.3 Optical tweezers 3302.2 Optical trap instrumentation 3302.3 Calibrations 3322.3.1 Calibration of trap stiffness 3322.3.2 Calibration of force 3332.3.3 Calibration of distance 3342.4 Types of experiments 3342.4.1 Force-ramp 3342.4.2 Force-clamp or constant-force experiments 3352.4.3 Extension-clamp or constant extension experiments 3352.4.4 Force-jump, Force-drop 3362.4.5 Passive mode 3363. Thermodynamics 3363.1 Reversibility 3363.2 Gibbs free energy 3373.2.1 Stretching free energy 3383.2.1.1 Rigid molecules 3383.2.1.2 Compliant or flexible molecules 3393.2.2 Free energy of a reversible unfolding transition 3393.2.3 Free energy of unfolding at zero force 3403.2.4 Free energy of an irreversible unfolding transition 3403.2.4.1 Jarzynski's method 3413.2.4.2 Crooks fluctuation theorem 3434. Kinetics 3454.1 Measuring rate constants 3454.1.1 Hopping 3454.1.2 Force-jump, Force-drop 3474.1.3 Force-ramp 3484.1.4 Instrumental effects 3504.2 Kinetic mechanisms 3514.2.1 Free-energy landscapes 3514.2.2 Kinetics of unfolding 3535. Relating force-measured data to other measurements 3545.1 Thermodynamics 3545.2 Kinetics 3576. Acknowledgements 3577. References 358Single-molecule methods have made it possible to apply force to an individual RNA molecule. Two beads are attached to the RNA; one is on a micropipette, the other is in a laser trap. The force on the RNA and the distance between the beads are measured. Force can change the equilibrium and the rate of any reaction in which the product has a different extension from the reactant. This review describes use of laser tweezers to measure thermodynamics and kinetics of unfolding/refolding RNA. For a reversible reaction the work directly provides the free energy; for irreversible reactions the free energy is obtained from the distribution of work values. The rate constants for the folding and unfolding reactions can be measured by several methods. The effect of pulling rate on the distribution of force-unfolding values leads to rate constants for unfolding. Hopping of the RNA between folded and unfolded states at constant force provides both unfolding and folding rates. Force-jumps and force-drops, similar to the temperature jump method, provide direct measurement of reaction rates over a wide range of forces. The advantages of applying force and using single-molecule methods are discussed. These methods, for example, allow reactions to be studied in non-denaturing solvents at physiological temperatures; they also simplify analysis of kinetic mechanisms because only one intermediate at a time is present. Unfolding of RNA in biological cells by helicases, or ribosomes, has similarities to unfolding by force.

Publisher

Cambridge University Press (CUP)

Subject

Biophysics

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3