Abstract
The atomic force microscope (AFM) was invented by Binnig, Quate and Gerber less than 10 years ago (Binniget al. 1986). In their first prototype, a piece of goldfoil was used as the cantilever, with a crushed diamond tip mounted at the end. On the back of the cantilever, a tunnelling junction was used to monitor the deflection of the cantilever (the gold-foil) when the specimen was scanned with the tip in contact with the surface. Thus, the surface topography of the specimen was obtained with a resolution critically dependent on the sharpness of the tip provided the deformation of the specimen was not serious. Even with such a crude set-up, they managed to obtain a lateral resolution of ˜ 30 Å and a vertical resolution of better than 1 Å on an amorphous A12O3surface. The operating principle of such an instrument is deceptively simple. However, such an arrangement was inconvenient for routine operations and unsuitable for imaging hydrated specimens, because the tunnelling junction is easily contaminated in air and works poorly in aqueous solutions (Alexanderet al. 1989). As a result, the application of this type of AFM to biological samples was rare (Engel, 1991).
Publisher
Cambridge University Press (CUP)
Cited by
154 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献