Language and pain predict persistent depression among seriously ill home care clients

Author:

Ameen AaishaORCID,Williams NicoleORCID,Guthrie Dawn M.

Abstract

AbstractObjectivesThis study examined potential predictors of persistent depressive symptoms in a cohort of seriously ill older adults (aged 65+ years) receiving home care services.MethodsThis was a retrospective cohort study using secondary data collected from the Resident Assessment Instrument for Home Care for all assessments completed between 2001 and 2020. The cohort included seriously ill individuals with depressive symptoms at baseline and who continued to have depressive symptoms on reassessment within 12 months (n = 8,304). Serious illness was defined as having severe health instability, a prognosis of less than 6 months, or a goal of care related to palliative care (PC) on admission to the home care program.ResultsThe mean age of the sample was 80.8 years (standard deviation [SD] = 7.7), 61.1% were female, and 82.1% spoke English as their primary language. The average length of time between assessments was 4.9 months (SD = 3.3). During that time, 64% of clients had persistent symptoms of depression. A multivariate logistic regression model found that language, pain, caregiver burden, and cognitive impairment were the most significant predictors of experiencing persistent depressive symptoms.Significance of resultsPersistent depressive symptoms are highly prevalent in this population and, left untreated, could contribute to the person experiencing a “bad death.” Some of the risk factors for this outcome are amenable to change, making it important to continually assess and flag these factors so interventions can be implemented to optimize the person’s quality of life for as long as possible.

Publisher

Cambridge University Press (CUP)

Subject

Psychiatry and Mental health,Clinical Psychology,General Medicine,General Nursing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3