Abstract
We study sufficient conditions under which a nowhere scattered
$\mathrm {C}^*$
-algebra
$A$
has a nowhere scattered multiplier algebra
$\mathcal {M}(A)$
, that is, we study when
$\mathcal {M}(A)$
has no nonzero, elementary ideal-quotients. In particular, we prove that a
$\sigma$
-unital
$\mathrm {C}^*$
-algebra
$A$
of
(i)
finite nuclear dimension, or
(ii)
real rank zero, or
(iii)
stable rank one with
$k$
-comparison,
is nowhere scattered if and only if
$\mathcal {M}(A)$
is.
Publisher
Cambridge University Press (CUP)
Reference56 articles.
1. Simple $C^*$-algebras with continuous scales and simple corona algebras;Lin;Proc. Amer. Math. Soc,1991
2. On the Lie ideals of $\Cstar$-algebras
3. The Jiang-Su algebra revisited;Rørdam;J. Reine Angew. Math,2010
4. Applications of weak∗ semicontinuity in C∗-algebra theory
5. 46 Thiel, H. , The Cuntz semigroup, lecture notes available at www.math.uni-muenster.de/u/hannes.thiel/, 2017.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献