Semilinear elliptic equations involving power nonlinearities and Hardy potentials with boundary singularities

Author:

Gkikas Konstantinos T.,Nguyen Phuoc-Tai

Abstract

Let $\Omega \subset \mathbb {R}^N$ ( $N\geq 3$ ) be a $C^2$ bounded domain and $\Sigma \subset \partial \Omega$ be a $C^2$ compact submanifold without boundary, of dimension $k$ , $0\leq k \leq N-1$ . We assume that $\Sigma = \{0\}$ if $k = 0$ and $\Sigma =\partial \Omega$ if $k=N-1$ . Let $d_{\Sigma }(x)=\mathrm {dist}\,(x,\Sigma )$ and $L_\mu = \Delta + \mu \,d_{\Sigma }^{-2}$ , where $\mu \in {\mathbb {R}}$ . We study boundary value problems ( $P_\pm$ ) $-{L_\mu} u \pm |u|^{p-1}u = 0$ in $\Omega$ and $\mathrm {tr}_{\mu,\Sigma}(u)=\nu$ on $\partial \Omega$ , where $p>1$ , $\nu$ is a given measure on $\partial \Omega$ and $\mathrm {tr}_{\mu,\Sigma}(u)$ denotes the boundary trace of $u$ associated to $L_\mu$ . Different critical exponents for the existence of a solution to ( $P_\pm$ ) appear according to concentration of $\nu$ . The solvability for problem ( $P_+$ ) was proved in [3, 29] in subcritical ranges for $p$ , namely for $p$ smaller than one of the critical exponents. In this paper, assuming the positivity of the first eigenvalue of $-L_\mu$ , we provide conditions on $\nu$ expressed in terms of capacities for the existence of a (unique) solution to ( $P_+$ ) in supercritical ranges for $p$ , i.e. for $p$ equal or bigger than one of the critical exponents. We also establish various equivalent criteria for the existence of a solution to ( $P_-$ ) under a smallness assumption on $\nu$ .

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3