Author:
Han Yanyan,Wen Yongming,Wu Huoxiong,Xue Qingying
Abstract
In this paper, we study the behaviours of the commutators
$[\vec b,\,T]$
generated by multilinear Calderón–Zygmund operators
$T$
with
$\vec b=(b_1,\,\ldots,\,b_m)\in L_{\rm loc}(\mathbb {R}^n)$
on weighted Hardy spaces. We show that for some
$p_i\in (0,\,1]$
with
$1/p=1/p_1+\cdots +1/p_m$
,
$\omega \in A_\infty$
and
$b_i\in \mathcal {BMO}_{\omega,p_i}$
(
$1\le i\le m$
), which are a class of non-trivial subspaces of
${\rm BMO}$
, the commutators
$[\vec b,\,T]$
are bounded from
$H^{p_1}(\omega )\times \cdots \times H^{p_m}(\omega )$
to
$L^p(\omega )$
. Meanwhile, we also establish the corresponding results for a class of maximal truncated multilinear commutators
$T_{\vec b}^*$
.
Publisher
Cambridge University Press (CUP)