Abstract
We consider two questions on the geometry of Lipschitz-free
$p$
-spaces
$\mathcal {F}_p$
, where
$0< p\leq 1$
, over subsets of finite-dimensional vector spaces. We solve an open problem and show that if
$(\mathcal {M}, \rho )$
is an infinite doubling metric space (e.g. an infinite subset of an Euclidean space), then
$\mathcal {F}_p (\mathcal {M}, \rho ^\alpha )\simeq \ell _p$
for every
$\alpha \in (0,\,1)$
and
$0< p\leq 1$
. An upper bound on the Banach–Mazur distance between the spaces
$\mathcal {F}_p ([0, 1]^d, |\cdot |^\alpha )$
and
$\ell _p$
is given. Moreover, we tackle a question due to Albiac et al. [4] and expound the role of
$p$
,
$d$
for the Lipschitz constant of a canonical, locally coordinatewise affine retraction from
$(K, |\cdot |_1)$
, where
$K=\cup _{Q\in \mathcal {R}} Q$
is a union of a collection
$\emptyset \neq \mathcal {R} \subseteq \{ Rw + R[0,\,1]^d: w\in \mathbb {Z}^d\}$
of cubes in
$\mathbb {R}^d$
with side length
$R>0$
, into the Lipschitz-free
$p$
-space
$\mathcal {F}_p (V, |\cdot |_1)$
over their vertices.
Publisher
Cambridge University Press (CUP)
Reference18 articles.
1. Some properties of $l_p$, $0 < p < 1$;Stiles;Studia Math,1972
2. Spaces of Lipschitz and Hölder functions and their applications;Kalton;Collect. Math,2004
3. Lipschitz structure of quasi-Banach spaces
4. Schauder bases in Lipschitz free spaces over nets in Banach spaces
5. Lipschitz-free Banach spaces
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Canonical embedding of Lipschitz-free p-spaces;Banach Journal of Mathematical Analysis;2024-04