Author:
Cutler Paul M.,Scott Munro D.
Abstract
AbstractModels for calculating glacier mass balance are sensitive to surface reflectivity variation. Fieldwork carried out on Peyto Glacier, Alberta, Canada, contributes to the data set available for ice-reflectivity parameterization in such models. Hemispherical reflectivity in the visible and near-infrared parts of the solar spectrum was obtained for rock, snow and three contrasting glacier surfaces to examine temporal and spatial variations. Glacier-ice near-infrared reflectivity displays only minor spatial variation (0.12–0.17) in comparison with the visible range (0.23–0.40), the latter being influenced primarily by surface impurity content. Surface roughness is of minor importance compared with impurities. Temporal variation of reflectivity was weak at all glacier-ice and rock locations; slight variations observed were due to changes in either solar zenith angle or cloud amount. Snow reflectivity displayed pronounced diurnal asymmetry and a larger response to cloud cover. The minimal temporal variation in glacier-ice reflectivity simplifies its parameterization. This behaviour is additionally useful for satellite-based measurements of the reflectivity field on larger glaciers, as images obtained within a 6 h window centred on solar noon are likely to yield values which are within 2–3% of daily mean values.
Publisher
Cambridge University Press (CUP)
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献