Using Linear Discriminant Analysis to Classify Snowfall Situations into Avalanching and Non-Avalanching Ones

Author:

Drozdovskaya N.F.

Abstract

AbstractThe existing methods of predicting avalanche danger often do not meet users’ demands because of the empiric character of the insufficient volume of information used. In such forecasts the contribution of each individual parameter into the prognostic information is unknown, and this is very important when studying such an event as avalanche formation, which is conditioned by a complex interaction of numerous factors, including snow accumulation, snow thickness, and the conditions of its development. It is obvious that such problems can be successfully solved by statistical methods, and that explains the growing interest in numerical methods of avalanche forecasting. Problems of multi-dimensional observations arises in many scientific fields. The method suited for this problem is discriminant analysis, the purpose of which is to divide a multi-dimensional observation vector into predetermined classes.This study considers the prognostic (diagnostic) problems of fresh-snow avalanches released during snowfall or in the two days after it has ceased. The theoretical basis is a complex of statistical methods: correlation and dispersion analysis, “sifting” for the choice of predictors’ informative groups, construction of linear parametric discriminant functions, predictions based on training sample, and verification of discriminant functions based on independent material.The archive used in the study consisted of 500 avalanching cases and 1 300 non-avalanching ones. All situations were grouped according to geomorphological characteristics. Each situation is described by eight meteorological characteristics. The results of classification of snowfall situations into avalanching and non-avalanching ones are as follows: reliability ofpis from 75% to 91%,Hfrom 0.15 to 0.51; based on independent material the reliability ofpis from 63% to 85%,Hfrom 0. 10 to 0.56.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3